2023.11.27 week-11 TA class

Supple10 Q3

Problem

求行列式 $D_{n}$的值(代数表达式)。

$$D_{n} = \left| \begin{array}{cccc} 1 & 1 & \dots & 1 \\ x_{1} & x_{2} & \dots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \dots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-2} & x_{2}^{n-2} & \dots & x_{n}^{n-2} \\ x_{1}^n & x_{2}^n & \dots & x_{n}^n \end{array} \right| $$

思想:补全缺失的行和列

A simplified example

$$ \begin{vmatrix} 1& 1 & 1 & 1 \\ a& b & c & d \\ a^{2}& b^{2} &c^{2} &d^{2} \\ a^{4}& b^{4} &c^{4} &d^{4} \end{vmatrix}$$

Solution:Construct complete Vandermonde and compare coefficient.

构造完整范德姆行列式并比较(二项式)系数

$$ \det A= \begin{vmatrix} 1& 1 & 1 & 1 & 1 \\ a& b & c & d &x \\ a^{2}& b^{2} &c^{2} &d^{2} & x^2 \\ a^{3}& b^{3} &c^{3} &d^{3} & x^3 \\ a^{4}& b^{4} &c^{4} &d^{4} & x^4 \end{vmatrix}$$

Now we want to find the minor $M_{25}$ of Matrix A.

Define constant $S = (d-c)(b-d)(d-a)(c-b)(c-a)(b-a)$.

Calculate the Vandermonde determinant and co-factor expansion by column n;

计算范德姆行列式和列 n 的代数余子式

$$\begin{align} |A| & =S(x-d)(x-c)(x-b)(x-a) \\ & =C_{15}+C_{25}x+C_{35}x^{2}+C_{45}x^{3}+C_{55}x^{4} \\ \end{align}$$

Compare the coefficient of x:

比较x的系数

$$C_{25}=(-abc-abd-acd-bcd)S$$

So, the original determinant is

$$M_{25}=-C_{25}=(+abc+abd+acd+bcd)S$$

Solution

$$D_{expansion}=
\begin{vmatrix} 1 & 1 & \dots& 1 &1\\ x_{1} &x_{2} &\dots &x_{n} &y \\ x_{1}^{2} &x_{2}^{2} &\dots &x_{n}^{2} &y^2 \\ \dots&\dots& &\dots &\dots \\ x_{1}^{n-2} &x_{2}^{n-2} &\dots &x_{n}^{n-2} &y^{n-2} \\ x_{1}^{n-1} &x_{2}^{n-1} &\dots &x_{n}^{n-1} &y^{n-1} \\ x_{1}^n &x_{2}^n &\dots &x_{n}^n &y^{n} \end{vmatrix} $$

然后按最后一列展开,我们所需要求的$D_{n}$应该会和 n 行 n+1 列(即补充的行和列,对应 $y^{n-1}$ )的代数余子式有关,因此只看这一项。

将 $D_{e}$ 算两次即可比较得出 $D_{n}$

第一步,按最后一列展开,只看 $y^{n-1}$

$$ (-1)^{n+(n+1)}D_{n}y^{n-1}=-D_{n}y^{n-1} $$

第二步,根据 Vandermonde Determinant 的性质:

(为了方便书写,我们记 $y=x_{n+1}$ )

$$ D_{e}=\prod_{1\le j < i \le n+1} (x_{i}-x_{j}) $$

我们想要$y^{n-1}$的系数,于是改写为

$$ D_{e}=\left[ \prod_{1\le j < i \le n} (x_{i}-x_{j}) \right] \left[ \prod_{1\le i \le n} (y-x_{i}) \right] $$

左边方括号为$D_{n}$ ,右边运用二项式定理,得$y^{n-1}$项为

$$ \sum_{i=1}^{n}(-x_i)y^{n-1} $$

比较即得

$$ -D_{n}=\left[ \prod_{1\le j < i \le n} (x_{i}-x_{j}) \right] \left[ \sum_{i=1}^{n}(-x_i) \right] $$

$$ D_{n}=\left[ \prod_{1\le j < i \le n} (x_{i}-x_{j}) \right] \left[ \sum_{i=1}^{n}x_i \right] $$