Skip to content
Go back

Row Lost in Vandermonde

编辑页面

2023.11.27 week-11 TA class

Supple10 Q3

Problem

求行列式 DnD_{n}的值(代数表达式)。

Dn=111x1x2xnx12x22xn2x1n2x2n2xnn2x1nx2nxnnD_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-2} & x_{2}^{n-2} & \cdots & x_{n}^{n-2} \\ x_{1}^{n} & x_{2}^{n} & \cdots & x_{n}^{n} \end{vmatrix}

思想:补全缺失的行和列

A simplified example

1111 abcd a2b2c2d2 a4b4c4d4\begin{vmatrix} 1& 1 & 1 & 1 \\\ a& b & c & d \\\ a^{2}& b^{2} &c^{2} &d^{2} \\\ a^{4}& b^{4} &c^{4} &d^{4} \end{vmatrix}

Solution:Construct complete Vandermonde and compare coefficient.

构造完整范德姆行列式并比较(二项式)系数

detA=11111 abcdx a2b2c2d2x2 a3b3c3d3x3 a4b4c4d4x4\det A= \begin{vmatrix} 1& 1 & 1 & 1 & 1 \\\ a& b & c & d &x \\\ a^{2}& b^{2} &c^{2} &d^{2} & x^2 \\\ a^{3}& b^{3} &c^{3} &d^{3} & x^3 \\\ a^{4}& b^{4} &c^{4} &d^{4} & x^4 \end{vmatrix}

Now we want to find the minor M25M_{25} of Matrix A.

Define constant S=(dc)(bd)(da)(cb)(ca)(ba)S = (d-c)(b-d)(d-a)(c-b)(c-a)(b-a).

Calculate the Vandermonde determinant and co-factor expansion by column n;

计算范德姆行列式和列 n 的代数余子式

A=S(xd)(xc)(xb)(xa) =C15+C25x+C35x2+C45x3+C55x4 \begin{align} |A| & =S(x-d)(x-c)(x-b)(x-a) \\\ & =C_{15}+C_{25}x+C_{35}x^{2}+C_{45}x^{3}+C_{55}x^{4} \\\ \end{align}

Compare the coefficient of x:

比较x的系数

C25=(abcabdacdbcd)SC_{25}=(-abc-abd-acd-bcd)S

So, the original determinant is

M25=C25=(+abc+abd+acd+bcd)SM_{25}=-C_{25}=(+abc+abd+acd+bcd)S

Solution

Dexpansion=1111x1x2xny x12x22xn2y2  x1n2x2n2xnn2yn2 x1n1x2n1xnn1yn1 x1nx2nxnnynD_{expansion}= \begin{vmatrix} 1 & 1 & \dots& 1 &1\\\\ x_{1} &x_{2} &\dots &x_{n} &y \\\ x_{1}^{2} &x_{2}^{2} &\dots &x_{n}^{2} &y^2 \\\ \dots&\dots& &\dots &\dots \\\ x_{1}^{n-2} &x_{2}^{n-2} &\dots &x_{n}^{n-2} &y^{n-2} \\\ x_{1}^{n-1} &x_{2}^{n-1} &\dots &x_{n}^{n-1} &y^{n-1} \\\ x_{1}^n &x_{2}^n &\dots &x_{n}^n &y^{n} \end{vmatrix}

然后按最后一列展开,我们所需要求的DnD_{n}应该会和 n 行 n+1 列(即补充的行和列,对应 yn1y^{n-1} )的代数余子式有关,因此只看这一项。

DeD_{e} 算两次即可比较得出 DnD_{n}

第一步,按最后一列展开,只看 yn1y^{n-1}

(1)n+(n+1)Dnyn1=Dnyn1(-1)^{n+(n+1)}D_{n}y^{n-1}=-D_{n}y^{n-1}

第二步,根据 Vandermonde Determinant 的性质:

(为了方便书写,我们记 y=xn+1y=x_{n+1}

De=1j<in+1(xixj)D_{e}=\prod_{1\le j < i \le n+1} (x_{i}-x_{j})

我们想要yn1y^{n-1}的系数,于是改写为

De=[1j<in(xixj)][1in(yxi)]D_{e}=\left[ \prod_{1\le j < i \le n} (x_{i}-x_{j}) \right] \left[ \prod_{1\le i \le n} (y-x_{i}) \right]

左边方括号为DnD_{n} ,右边运用二项式定理,得yn1y^{n-1}项为

i=1n(xi)yn1\sum_{i=1}^{n}(-x_i)y^{n-1}

比较即得

Dn=[1j<in(xixj)][i=1n(xi)]-D_{n}=\left[ \prod_{1\le j < i \le n} (x_{i}-x_{j}) \right] \left[ \sum_{i=1}^{n}(-x_i) \right] Dn=[1j<in(xixj)][i=1nxi]D_{n}=\left[ \prod_{1\le j < i \le n} (x_{i}-x_{j}) \right] \left[ \sum_{i=1}^{n}x_i \right]

编辑页面
Share this post on:

Previous Post
Golden Pheasant Award | Reflections on My Journey to SUSTech